# Lecture #8

## Enzyme measurements

#### Aims:

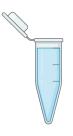
- Understand the basic principles and application-related significance of enzymes
- Get introduced into enzyme screens via fluorescence-activated droplet sorting
- Become familiar with your practical task

| Lectures<br>(CO 121) | Date & Topic                                                                                                | Details                                                                                                      | Practical (location as color coded on next slide)                                                                                                                                                                        |
|----------------------|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1                    | 13.09 General Intro                                                                                         | Get to know teachers, TAs, students and aims of the course                                                   | 17.09 Measure temperature using thermistor (using M&A explorer) TL                                                                                                                                                       |
| 2                    | 20.09 Lecture LabVIEW TL<br>Group formation (A-F, 3 students, each)                                         | Some first basic steps in LabVIEW programming                                                                | 24.09 Brief intro into LabVIEW thermistor program (input and output)                                                                                                                                                     |
| 3                    | 27.09 Case study FACS, similarities and differences to droplet microfluidics Selection of case study topics | <ol> <li>Property to measure?</li> <li>Device?</li> <li>Working principle?</li> <li>Alternatives?</li> </ol> | O1.10 Preparation of bioinstrument case study  08.10 No course  15.10 Tour through LBMM workstation labs, intro into Nature Protocols (Groups A-B)  22.10 Holidays  29.10 .10 Build workstation optics 1                 |
| 4                    | 04.10 No course, preparation for case study                                                                 |                                                                                                              | 08.10 No course                                                                                                                                                                                                          |
| 5                    | 11.10 Groups A-B presenting case study                                                                      |                                                                                                              | 15.10 Tour through LBMM workstation labs, intro into Nature Protocols (Groups A-B)                                                                                                                                       |
| 6                    | 18.10 Lecture optics Homework: Students to prepare one laser/PMT blueprint FP                               | Mirrors, filters, microscope setup, lenses, etc.                                                             | 22.10 Holidays                                                                                                                                                                                                           |
|                      | 25.10 Holidays, submit your blueprint by email                                                              |                                                                                                              | 29.10 .10 Build workstation optics 1                                                                                                                                                                                     |
| 7                    | 01.11 Lecture electronics                                                                                   | FPGA, PMTs, amplifier, function generator                                                                    | 05.11 Build workstation 1 optics 2, laser alignment; build workstation electronics                                                                                                                                       |
| 8                    | 08.11 Intro into enzyme concentration measurement experiment (kinetics, etc.) + task FP                     | Enzymes, kinetics, practical task                                                                            | 12.11 -                                                                                                                                                                                                                  |
| 9                    | <mark>15.11 -</mark>                                                                                        | Software similar to Thermistor program, pdf on installation                                                  | 19.11 Intro to droplet analysis software (LabVIEW) TL Build workstation software: Add output LED (mimicking sorting trigger) into analysis software  26.11 Run microfluidic experiments, e.g. determine concentration of |
| 10                   | 22.11 Fundamentals of microfluidics and microfluidic chips                                                  | Flow at the microscale, microfluidic chips (manufacturing), droplet microfluidic modules                     | ivivii ili diopicts                                                                                                                                                                                                      |
| 11                   | 29.11 Prepare presentation                                                                                  |                                                                                                              | 3.12 Sorting Demo on LBMM workstation1 (Groups A-B)                                                                                                                                                                      |
| 12                   | 06.12 Prepare presentation                                                                                  |                                                                                                              | 10.12                                                                                                                                                                                                                    |
| 13                   | 13.12 Groups B-A presenting results 13.12 Submit report (all!)                                              |                                                                                                              | 17.12 – TUESDAY! - Individual Q & A sessions (10min, Groups A-B)                                                                                                                                                         |

#### **Report & presentation**

**13.12.2024:** presentations

**13.12.2024:** submit reports


**17.12.2024:** individual Q&A

#### Final report: 8 – 10 pages

- introduction
- explain your design
- construction steps
- experimental analysis

#### Your practical task

#### Uncharacterized sample

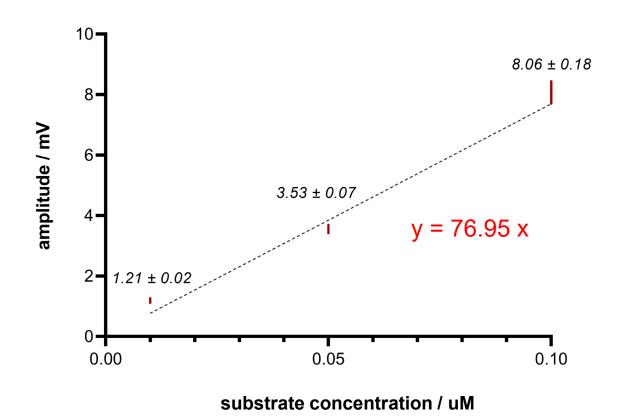




Target: **Substrate** 

Value: Concentration

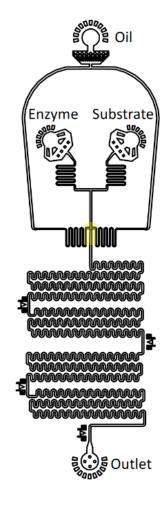
**How...? Bioinstrument!** 




'What can you measure with your setup?'

'What kind of values do you get?'

#### Some help...


#### Calibration curve



#### **Substrate conversion**

но

https://www.sigmaaldrich.com/CH/de/substance/fluorescein332312321075

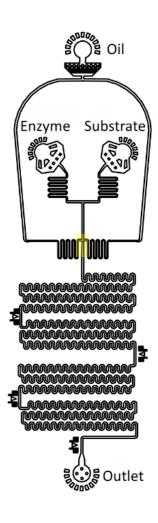


**fluorescein** di-β-D-galactopyranoside (FDG)

fluorescein

#### cleavage in presence of an enzyme

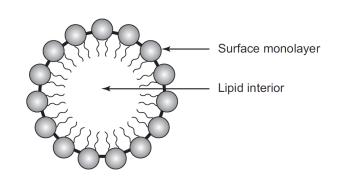
#### **Substrate conversion**


https://www.caymanchem.com/product/28015

https://www.sigmaaldrich.com/CH/de/product/sigma/73144

**resorufin** di-β-D-galactopyranoside (RDG)

resorufin


cleavage in presence of an enzyme



#### What are enzymes?

#### **Nucleotides** Sugars Amino acids Alkyl COO-Thymine (T) Cytosine (C) Pyrimidine bases Pyrimidine Glycine (Gly or G) Alanine (Ala or A) Sucrose Purine Purine bases Glucose ( $\alpha 1 \rightarrow \beta 2$ ) Fructose Bacterial 70S Eukaryotic **Enzymes** 80S **Ribozymes**

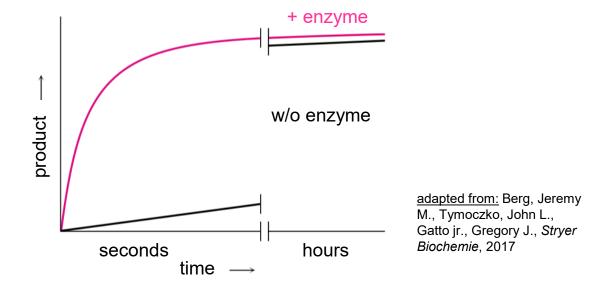
#### Fatty acids

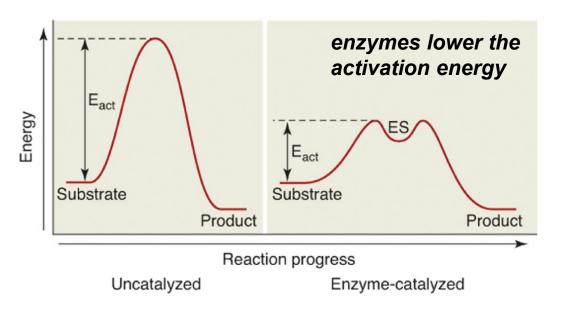


Ochs, Raymond S., Biochemistry, 2022 8

#### What are enzymes?

- catalysis occurs in the <u>active site</u>
- enzymes act <u>specifically</u>


Ochs, Raymond S., *Biochemistry*, 2022


https://www.caymanchem.com/product/28015

#### What are enzymes?

- = biological catalysts
- = increasing the reaction rate
- = not affecting the thermodynamic equilibrium

$$\Delta G^0 = R T ln(K_{eq})$$





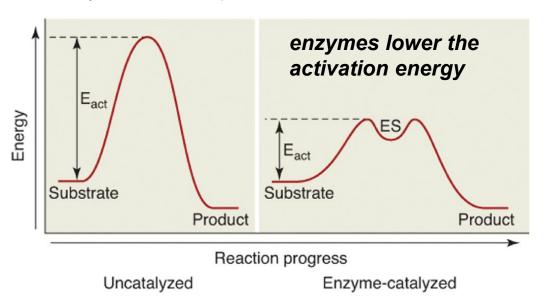
#### Why are enzymes of interest?

### TABLE 6.1 Classification of Enzymes by the First Category of the Enzyme Commission (EC)

| ЕС Туре | Category       | Example                     |
|---------|----------------|-----------------------------|
| 1       | Oxidoreductase | Lactate Dehydrogenase       |
|         |                | (Chapter 9)                 |
| 2       | Transferase    | Hexokinase                  |
|         |                | (Chapter 9)                 |
| 3       | Hydrolase      | Sucrase                     |
|         |                | (this chapter)              |
| 4       | Lyase          | Aldolase                    |
|         |                | (Chapter 9)                 |
| 5       | Isomerase      | Glucose Phosphate Isomerase |
|         |                | (Chapter 9)                 |
| 6       | Ligase         | Pyruvate Carboxylase        |
|         |                | (Chapter 13)                |
| 7       | Translocase    | Cytochrome c Oxidase        |
|         |                | (chapter 10)                |
|         |                |                             |

Ochs, Raymond S., Biochemistry, 2022

#### **Enzymes = fundamental necessities for life**


- Research application
- Industrial application
- Medical application

... reactivity, specificity, kinetics

Bioinstrument: measures product formation or substrate conversion

#### How do enzymes work?

$$E + S \stackrel{k_1}{\longleftrightarrow} ES \stackrel{k_{cat}}{\longrightarrow} E + P$$



- (1) Steady state: rate of ES formation = rate of ES destruction
- (2) Enzyme concentration: [E]<sub>total</sub> = [E] + [ES]
- (3) <u>Initial velocity</u>: v = k<sub>cat</sub> [ES]

#### Michaelis-Menten equation

 $E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$ 

(1) rate of ES formation = rate of ES destruction

$$k_{1}$$
 [E] [S] =  $k_{-1}$  [ES] +  $k_{cat}$  [ES]
$$\frac{[E] [S]}{[ES]} = \frac{k_{cat} + k_{-1}}{k_{1}}$$

$$\frac{[E] [S]}{[ES]} = \mathbf{K}_{m}$$

(2) 
$$\frac{([E]_{total} - [ES]) [S]}{[ES]} = K_{m}$$

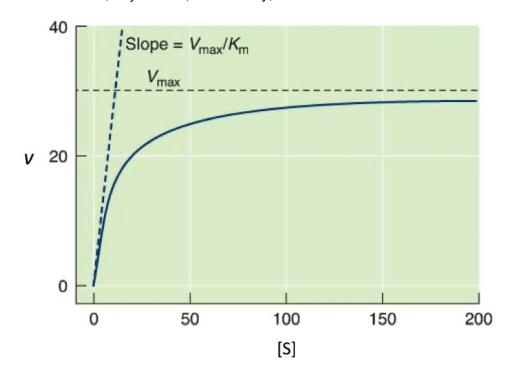
$$[ES] = \frac{[E]_{total}[S]}{\mathbf{K}_{m} + [S]}$$

(3) 
$$v = \frac{k_{cat}[E]_{total}[S]}{K_m + [S]}$$

$$[E]_{total} = [E] + [ES]$$

$$v = k_{cat}[ES]$$

#### **Michaelis-Menten equation**


$$E + S \stackrel{k_1}{\underset{k_{-1}}{\longleftrightarrow}} ES \stackrel{k_{cat}}{\longleftrightarrow} E + P$$

$$v = \frac{k_{cat}[E]_{total}[S]}{K_m + [S]}$$

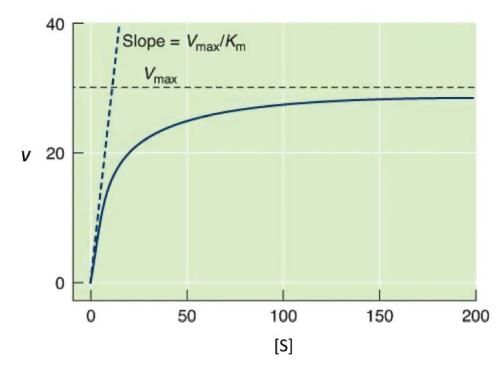
$$(4) \quad v_{\text{max}} = k_{\text{cat}} [E]_{\text{total}}$$

$$v = \frac{v_{max}[S]}{\mathbf{K_m} + [S]}$$

#### Ochs, Raymond S., Biochemistry, 2022



#### Michaelis-Menten equation


$$v = \frac{v_{max}[S]}{K_m + [S]}$$

case 1: [S] 
$$\rightarrow$$
  $\mathbf{K}_{m}$   $v = v_{max}$ 

$$\underline{\text{case 2}} : [S] << \mathbf{K}_{\mathbf{m}} \qquad v = \frac{v_{\text{max}}[S]}{\mathbf{K}_{\mathbf{m}}}$$

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

Ochs, Raymond S., Biochemistry, 2022



#### Michaelis-Menten equation: K<sub>m</sub>

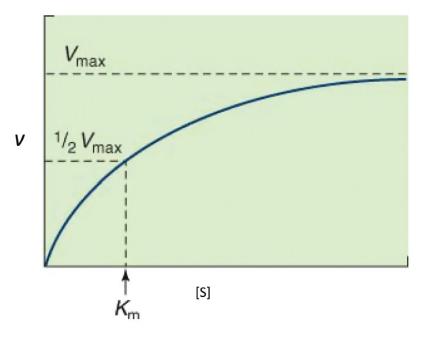
$$K_m$$
 /  $mol/L$ 

$$v = \frac{v_{\text{max}}[S]}{\mathbf{K_m} + [S]}$$

$$v = \frac{1}{2}v_{max} = \frac{v_{max}[S]}{K_m + [S]}$$

$$\frac{1}{2} = \frac{[S]}{\mathbf{K_m} + [S]}$$

$$K_m = [S]$$


 $K_{\rm m}$ 



- 1.) comparing different substrates ('specificity')
- 2.) estimating intracellular concentration ?!

$$E + S \xrightarrow{k_1} ES \xrightarrow{k_{cat}} E + P$$

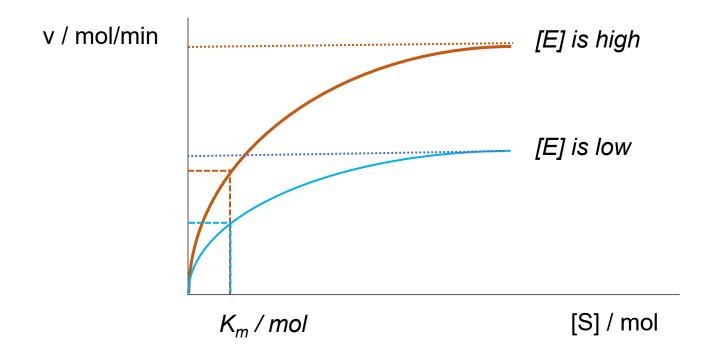
Ochs, Raymond S., Biochemistry, 2022



v<sub>max</sub> / mol/sec

maximum enzyme velocity

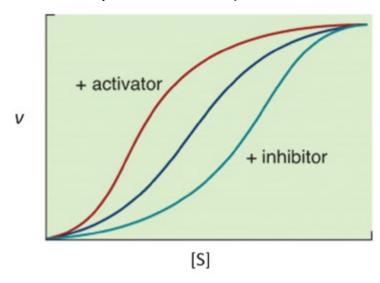
#### **Enzyme kinetics**


#### exemplary calculation:

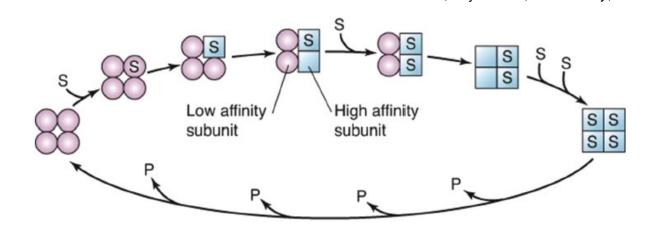
> substrate in excess, enzyme is limiting

'How should the curve look like?'

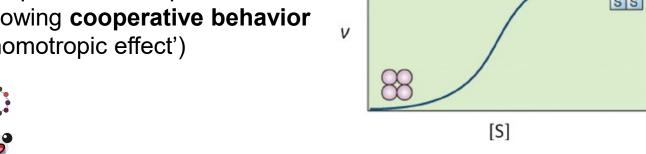
'Does the  $K_m$  change?'







#### Allosteric enzymes & cooperativity

= enzymes with modifiers binding to another place than the active site ( = 'effectors') ('heterotropic effect')


Ochs, Raymond S., Biochemistry, 2022



= <u>regulation</u> by metabolites other than the physiological ligand



- = often composed of multiple subunits
- = often showing cooperative behavior (here: 'homotropic effect')



 $V_{\text{max}}$ 

'How would you design an inhibitor?'

Ochs, Raymond S., Biochemistry, 2022

- (1) monitoring formed product
- (2) monitoring consumed substrate





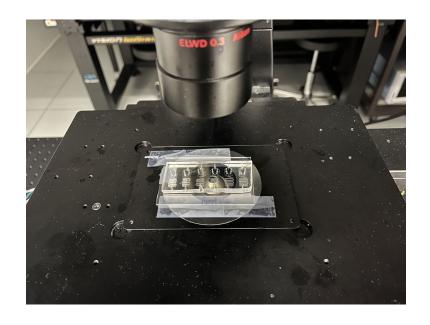
Table 2 Sensitivity of selected detection methods assuming standard instrumentation and time required for signal acquisition (e.g. in a droplet sorter). The inverse of the integration time indicates the upper limit of possible throughput for a given detection method, irrespective of limitations imposed by droplet dynamics

| Detection Method                | Sensitivity | Integration time |  |
|---------------------------------|-------------|------------------|--|
|                                 | High        | μs ms s          |  |
| Fluorescence Intensity          |             |                  |  |
| Fluorescence Anisotropy         |             |                  |  |
| Fluorescence Lifetime           | nM          |                  |  |
| Resonance Energy Transfer       |             |                  |  |
| Fluorescence Microscopy         |             |                  |  |
| Chemiluminescence               |             |                  |  |
| Electrochemistry                |             |                  |  |
| Surface EnhancedRamanScattering | μМ          |                  |  |
| Light Scattering                |             |                  |  |
| Absorbance                      |             |                  |  |
| Brightfield Microscopy          | mM          |                  |  |
|                                 | Low         | μs ms s          |  |
|                                 |             | (MHz) (kHz) (Hz) |  |

**Table 12.1** Detection methods used in enzyme assays

| Technique                    | Detection of                                                 | Enzyme assay for                                                                                                                                                                   |  |  |  |
|------------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Optical measurements         |                                                              |                                                                                                                                                                                    |  |  |  |
| UV spectroscopy              | NADH, A <sub>340nm</sub>                                     | Alcohol dehydrogenase; lactate dehydrogenase; malate dehydrogenase                                                                                                                 |  |  |  |
| Visible spectroscopy         | p-Nitrophenol, A <sub>405nm</sub>                            | Alkaline phosphatase                                                                                                                                                               |  |  |  |
| Polarimetry                  | Optical rotation, [α]                                        | Invertase                                                                                                                                                                          |  |  |  |
| Turbidimetry (Nephelometry)  | Attenuation of incident light (intensity of scattered light) | Lysozyme                                                                                                                                                                           |  |  |  |
| Fluorimetry                  | Fluorescein; ↓at 470 nm and ↑at 510 nm                       | Cholinesterase; acylase; chymotrypsin                                                                                                                                              |  |  |  |
| Luminometry                  | Luciferin; ↑at 562 nm                                        | Luciferase                                                                                                                                                                         |  |  |  |
| Electrochemical measurements |                                                              |                                                                                                                                                                                    |  |  |  |
| pH meter/pH-stat             | [H <sup>+</sup> ] change                                     | Lipase; cholinesterase; urease; glucose oxidase                                                                                                                                    |  |  |  |
|                              | Carbon dioxide                                               | Carbonic anhydrase                                                                                                                                                                 |  |  |  |
| Potentiometry                | Fe <sup>2+</sup> /Fe <sup>3+</sup>                           | Oxidase reactions (cytochromes)                                                                                                                                                    |  |  |  |
| Amperometry                  | O <sub>2</sub>                                               | Oxygenases; glucose oxidase                                                                                                                                                        |  |  |  |
| Manometric measurements      |                                                              |                                                                                                                                                                                    |  |  |  |
| Warburg manometer            | O <sub>2</sub> consumed, CO <sub>2</sub> released            | Respiratory enzymes; decarboxylases                                                                                                                                                |  |  |  |
| Radiotracer measuren         | ients                                                        |                                                                                                                                                                                    |  |  |  |
| Scintillation counter        | β-Emission                                                   | Dehydrogenases ( <sup>3</sup> H); glutamate decarboxylase ( <sup>14</sup> C); protein synthesis ( <sup>35</sup> S); kinases; enzymes of nucleic acid metabolism ( <sup>32</sup> P) |  |  |  |

Punekar, N.S., Enzymes: Catalysis, Kinetics and Mechanisms, 2018

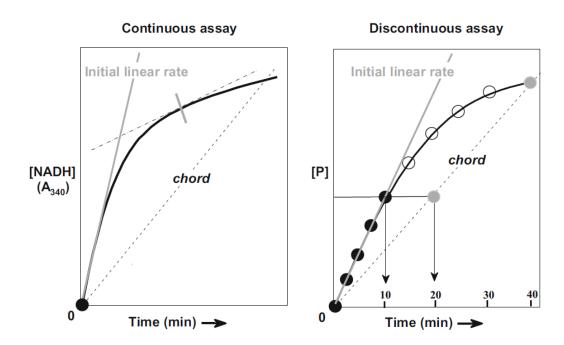

#### Fluorometric assays

= more sensitive vs. absorption-based methods

...however, providing a *relative value* 



'Which factors could vary between experiments?'



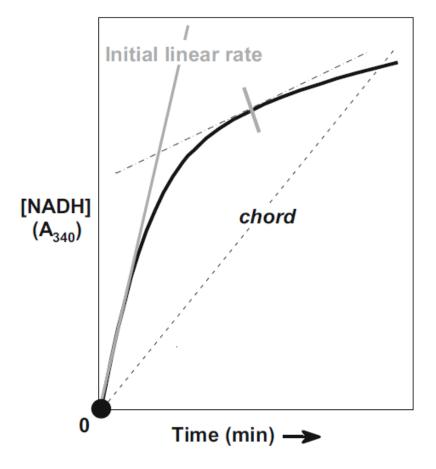

> <u>direct</u> assay vs. <u>indirect</u> assay (usually, coupled-enzyme assays)

'Difficulties with indirect assays?'



> continuous assay vs. discontinuous/end-point assay



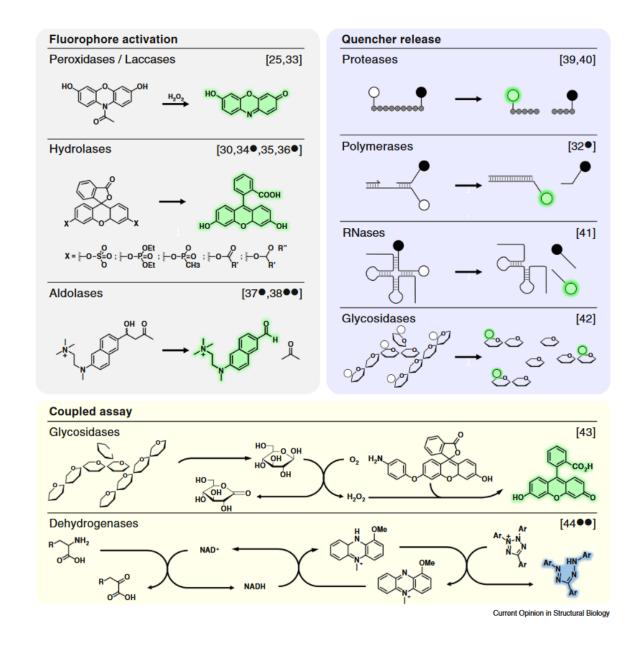

Punekar, N.S., Enzymes: Catalysis, Kinetics and Mechanisms, 2018

> loss of linearity... why?



- (1) continuous <u>substrate consumption</u>
- (2) more product: increased <u>backward reaction</u>
- (3) formed product may inhibit the enzyme
- (4) product formation could change the pH
- (5) <u>instability</u> of enzyme or substrate

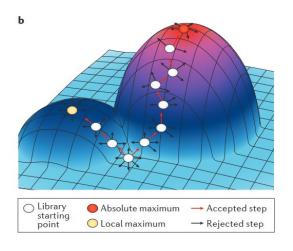
#### Continuous assay



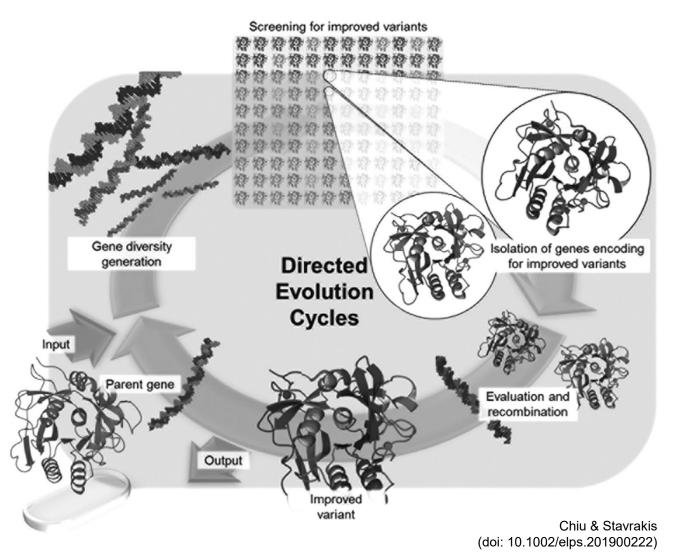

Punekar, N.S., Enzymes: Catalysis, Kinetics and Mechanisms, 2018

#### Good practices




- > apply concentrated stock solutions (why?)
- > controls: enzyme minus & substrate minus
- > consider: pH, ionic strength and temperature



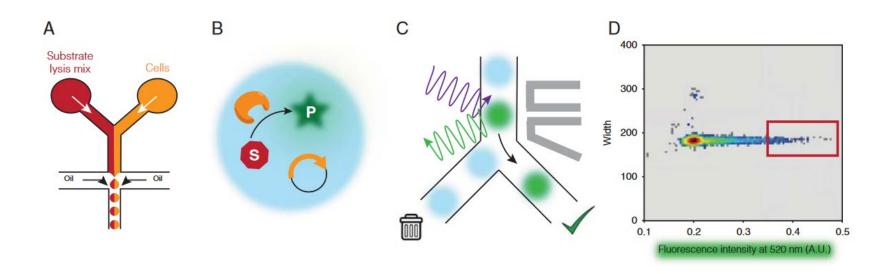

Bunzel et al., 2018 (doi: 10.1016/j.sbi.2017.12.010)

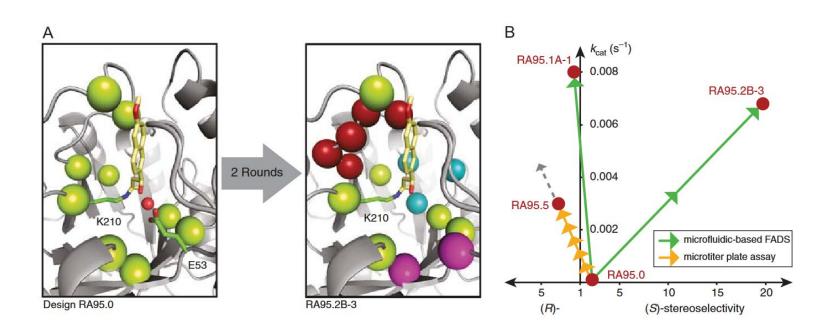
#### Directed evolution

- new enzyme variants
- desired activity
- *e.g.*, digesting unnatural substrates



Packer & Liu (doi: 10.1038/nrg3927)

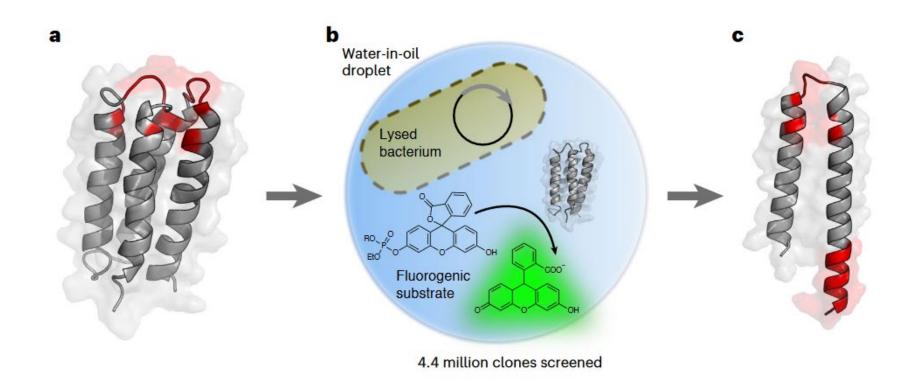




#### Directed evolution

- new enzyme variants
- desired activity
- *e.g.*, digesting unnatural substrates

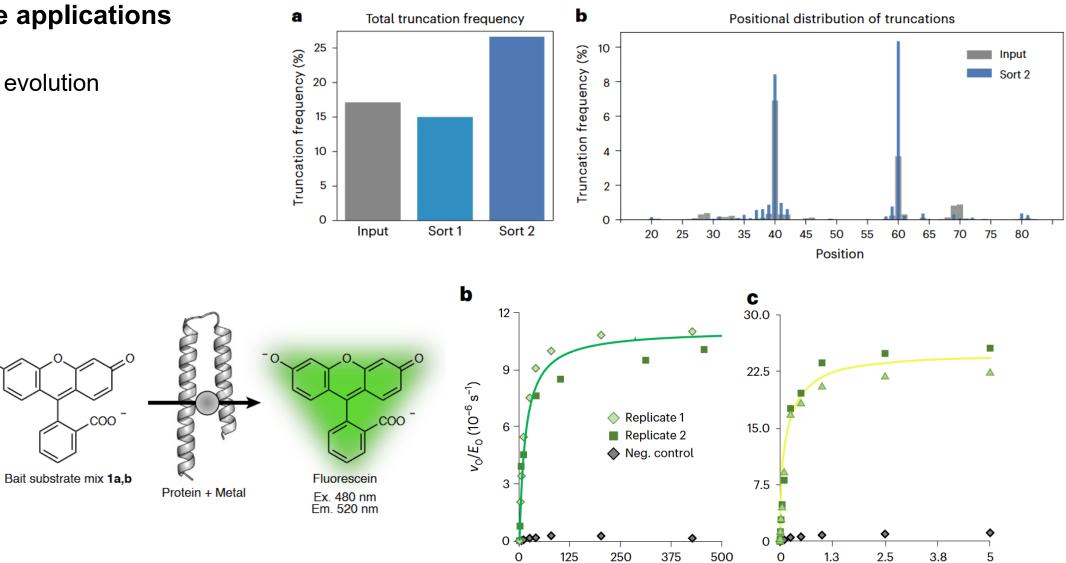


Directed evolution






Obexer et al., 2016 (doi: 10.1093/protein/gzw032)


Directed evolution

## Selection of a promiscuous minimalist cAMP phosphodiesterase from a library of de novo designed proteins



Schnettler et al., 2024 (doi: 10.1038/s41557-024-01490-4)

Directed evolution



125

250

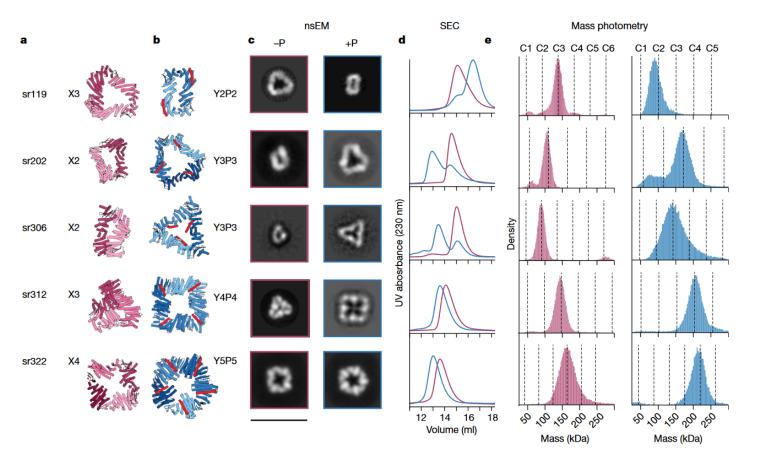
[cAMP] (µM)

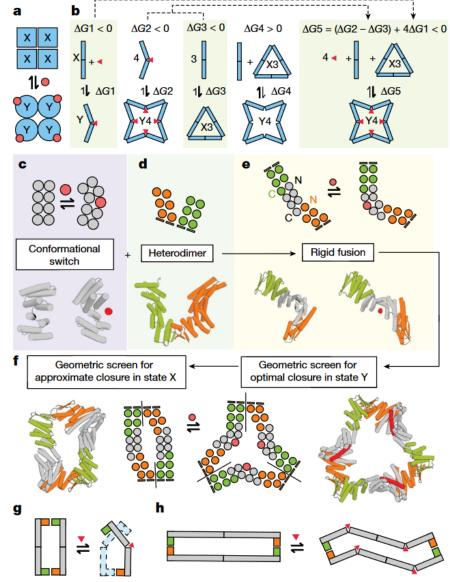
500

Schnettler et al., 2024 (doi: 10.1038/s41557-024-01490-4)

RÓ

R = H, Et


3.8


1.3

[bis-pNPP] (mM)

#### **Current research**

### De novo design of allosterically switchable protein assemblies





Pillai et al., 2024 (doi: 10.1038/s41586-024-07813-2)

#### Back to your practical task

2 groups and 2 different substrates

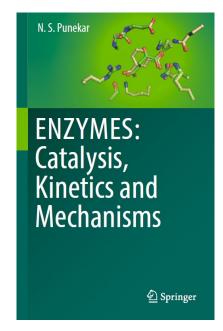
Beta-galactoside (EC 3.2.1.23)



Substrate: fluorescein di-β-D-galactopyranoside (FDG) (498 nm / 517 nm)

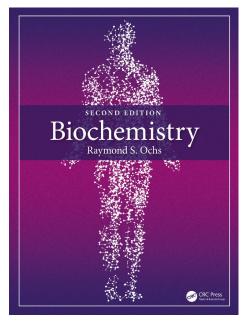
resorufin di-β-D-galactopyranoside (RDG) (571 nm / 585 nm)

'What is your substrate concentration?'


'What is the physiological role of your enzyme?'

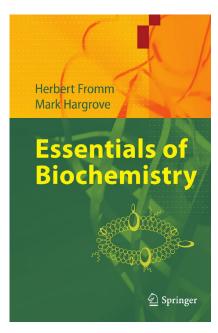
'What are (potential) applications?'




Final report

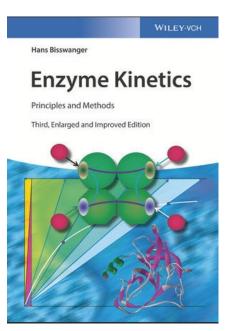
#### References and further literature




https://doi.org/10.1007/ 978-981-13-0785-0

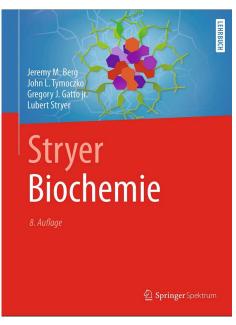
Punekar, N.S., Enzymes: Catalysis, Kinetics and Mechanisms, Singapore, Springer Nature, 2018




https://doi.org/10.1201/ 9781003029649

Ochs, Raymond S., Biochemistry, 2<sup>nd</sup> edition, Boca Raton, CRC Press, 2022




https://doi.org/10.1007/ 978-3-642-19624-9

Fromm, Herbert & Hargrove, Mark, Essentials of Biochemistry, Berlin, Heidelberg, Springer, 2012



https://doi.org/10.1002/ 9783527806461

Bisswanger, Hans, Enzyme Kinetics: Principles and Methods, 3<sup>rd</sup> edition, Weinheim, Wiley-VCH, 2017



https://doi.org/10.1007/978-3-662-54620-8

Berg, Jeremy M., Tymoczko, John L., Gatto jr., Gregory J., *Stryer Biochemie*, 8<sup>th</sup> edition, Berlin, Heidelberg, Springer Spektrum, 2017

**Publications:** Mair et al., 2017 (doi: 10.1016/j.cbpa.2017.02.018)

Chiu & Stavrakis (doi: 10.1002/elps.201900222)

Vallejo et al., 2019 (doi: 10.1021/acssynbio.9b00103)

Obexer et al., 2016 (doi: 10.1093/protein/gzw032)

Bunzel et al., 2018 (doi: 10.1016/j.sbi.2017.12.010)

Packer & Liu, 2015 (doi: 10.1038/nrg3927)